Existence and impulsive stability for second order retarded differential equations
نویسندگان
چکیده
One of the most important parts of the qualitative theory in differential equations is the stability of solutions. The problem of stabilizing the solutions by imposing proper impulse controls is very important to many areas of the sciences and engineering. It is important, for instance, in pharmacokinetics, biotechnology, economics, chemical technology and others. We consider certain second order delay differential equations and prove that the solutions can be stabilized by imposing proper impulse effects. An application of these equations appears, for instance, in impact theory. An impact is a short-time interaction of bodies and can be considered as an impulse action. In this direction we mention systems of billiard type which can be modelled by second order equations with impulses acting on the first derivative only, since positions of the colliding balls do not change at the moment of impulse action (impact) and their velocities acquire finite increments. Equations with impulses and delay are important, for instance, in models describing colliding viscoelastic bodies. See [2].
منابع مشابه
Stability analysis of impulsive fuzzy differential equations with finite delayed state
In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملStability analysis of nonlinear hybrid delayed systems described by impulsive fuzzy differential equations
In this paper we introduce some stability criteria of nonlinear hybrid systems with time delay described by impulsive hybrid fuzzy system of differential equations. Firstly, a comparison principle for fuzzy differential system based on a notion of upper quasi-monotone nondecreasing is presented. Here, for stability analysis of fuzzy dynamical systems, vector Lyapunov-like functions are defined....
متن کاملStability behavior of second order neutral impulsive stochastic differential equations with delay
In this article, we study the existence and asymptotic stability in pth moment of mild solutions to second order neutral stochastic partial differential equations with delay. Our method of investigating the stability of solutions is based on fixed point theorem and Lipchitz conditions being imposed.
متن کاملOn impulsive fuzzy functional differential equations
In this paper, we prove the existence and uniqueness of solution to the impulsive fuzzy functional differential equations under generalized Hukuhara differentiability via the principle of contraction mappings. Some examples are provided to illustrate the result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 177 شماره
صفحات -
تاریخ انتشار 2006